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Emerging CMPs (chip multiprocessors) are not only taking over the desktop and enterprise computing market

but they are also positioning themselves as building blocks of future exascale systems due to the exceptional

computing efficiency they offer in a single chip.

An inherent characteristic of CMPs that presents a significant obstacle is runtime variation: energy

consumption, thermal behavior, and process variation will vary across identically-designed components of a

CMP, producing a negative impact on application power consumption, reliability and performance. Runtime

variation has been identified as one of the key problems that could block further scaling of circuits if not

properly addressed. It not only causes reliability problems itself, but it also makes power-saving techniques

more susceptible to errors. Furthermore, diverse applications react to runtime variations differently. For

example, while a class of HPC applications have self-healing properties which help them cope with variations

in a natural fashion, other classes of HPC applications can experience substantial error rates under high

runtime variance. Clearly, this observation rules out any one-size-fits-all type of solution. For example,

conventional circuit/microarchitecture level solutions built upon the worst-case assumptions will not fly in

an exascale regime since they would cause too much power at runtime and this power consumption would

not be justified for many applications. Instead, what is needed is a low cost, low footprint, scalable and

adaptive solution that can be reconfigured at runtime based on the dynamic needs of threads, applications,

and workloads.

Motivated by this pressing need, we propose X-REEact, a novel lightweight and scalable application-level

runtime system with the following unique characteristics:

1. An X-REEact instance is initiated at runtime along with application threads, and its main task is the

effective adaptation of application threads to runtime variations in most effective manner. The precise

objective of an X-REEact instance is determined at runtime based on the dynamic characteristics of

the application to which it is attached. For example, if the application is cache intensive, the X-REEact

instance will change memory layout of data and/or reorder computations so that critical data accesses

do not experience high latencies and cumulative cache access latencies of different threads are balanced.

2. An X-REEact instance will be aware of architectural heterogeneity, in particular, the “big-core, small-

core” dichotomy. Using this information, it will be able to make the best decisions for the corresponding

application.

3. An X-REEact instance will be “morphable” at runtime in terms of the resources it exercises and metrics

it targets. For example, if it detects that temperature is becoming a problem in the current phase of

application execution, it will spawn helper threads whose job is to migrate select threads from hot

cores to cold cores.

4. X-REEact instances can form “alliances” among themselves if the involved HPC applications belong

to the same workflow (e.g., they have producer-consumer relationship).

5. An X-REEact instance will talk to the OS “on behalf of the application”. For example, it will ask

resources from the OS, let the OS know the dynamic requirements of its application, etc.

6. X-REEact will be built with “scalability as the first-class parameter”. Scalability will be achieved by

1) minimizing overheads, 2) carefully (but quickly) weighing pros and cons of potential optimizations

before applying them, and 3) minimizing resource footprint (to save power).
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Related Work

Virtualization for HPC systems is related to the run-time system approach taken by X-REEact. The Palacios

virtual machine monitor does full-system virtualization (FSV) across multiple nodes [6,7]. It allows different

guest OSes to be run on a host executive, such as Kitten on a Cray XT4 [7]. Palacios applies FSV techniques

to improve I/O pass through, workload paging, and controlled preemption [1,6]. In contrast, X-REEact does

application-level virtualization (ALV) to monitor, control, and transform application execution, rather than

providing FSV capabilities [5, 12]. X-REEact uses application-specific transformations, such as dynamic

rethreading [9] and cache contention mitigation [5, 13], to adapt execution to runtime variations. These

techniques require application information and mediation that are unavailable at the full-system level.

Other related work includes Nesbit and Smith’s virtual private machines to manage spatial and tempo-

ral resources in CMPs [10]. The Xen hypervisor has been extended to support application-specific resource

management [11]. Cuvillo described a thread virtual machine for applications to achieve full resource utiliza-

tion. Noll et al. describe a virtual machine to let programmers hide the heterogeneity of the Cell processor

architecture [4]. Other related work includes Multikernel [2] and Log-based architecture [3]. While these

systems provide application-specific management capabilities, X-REEact differs in it targets multiple nodes

and adapts (transforms) applications to mitigate runtime variation.

Assessment

• Challenges addressed: Fault avoidance, containment and enhanced detection; OS/R survivability;

Power management under dynamically changing resources; Runtime/application management of mem-

ory; Management and optimization for design and runtime heterogeneity; Scalability and parallelization

of the runtime system in a range of system scales.

• Maturity: We designed and implemented a prototype of X-REEact for a single CMP node. The

prototype is flexible and extensible to support different management policies and optimizations [5].

We demonstrated X-REEact in handling thermal emergencies [5], dynamic workload partitioning [8,9],

thread mapping to mitigate resource contention [13]. This work established X-REEact’s feasibility

and promise. We are now developing reliability optimizations, methods to scale to multiple nodes,

distributed algorithms for self organization, and application–system–X-REEact interfaces.

• Uniqueness: We are not aware of any existing runtime system that can morph itself (to serve the

application in the most efficient way) as well as help the application morph itself to cope with runtime

variations.

• Novelty: At any given time, our system can have multiple X-REEact instances, each serving to a

different application, trying to maximize a different objective, and cooperating with the OS on behalf

of its application. This facility will also make the OS design for future exascale machines easier by

shifting functionality to X-REEact instances.

• Applicability: X-REEact is expressly intended to accommodate a range of systems and runtime man-

agement and optimization strategies. It will provide the interfaces and support to permit custom ap-

proaches, as demonstrated in our initial prototype. As such, X-REEact has broad applicability beyond

high-performance computing to general-purpose systems as well (e.g., thermal/energy management for

desktop computers).

• Effort: With the foundation from our current prototype, we anticipate it will take one year to scale

the approach to multiple nodes, including developing algorithms and interfaces for X-REEact’s dy-

namic hierarchical organization. To incorporate reliability, energy and performance optimizations on

multiple nodes, we anticipate another one and a half years of work. To refine and finalize X-REEact’s

implementation, we anticipate it will take a a final six months.
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